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Abstract Both ammonia-oxidizing archaea (AOA) and bac-
teria (AOB) can play important roles in the microbial oxida-
tion of ammonia nitrogen in freshwater lake, but information
on spatiotemporal variation in water column and sediment
community structure is still limited. Additionally, the drivers
of the differences between sediment and water assemblages
are still unclear. The present study investigated the variation of
AOA and AOB communities in both water columns and sed-
iments of eutrophic freshwater Dianchi Lake. The abundance,
diversity, and structure of both planktonic and sediment
ammonia-oxidizing microorganisms in Dianchi Lake showed
the evident changes with sampling site and time. In both water
columns and sediments, AOB amoA gene generally
outnumbered AOA, and the AOB/AOA ratio was much
higher in summer than in autumn. The total AOA amoA abun-
dance was relatively great in autumn, while sediment AOB
was relatively abundant in summer. Sediment AOA amoA
abundance was likely correlated with ammonia nitrogen

(rs =0.963). The AOB/AOA ratio in lake sediment was posi-
tively correlated with total phosphorus (rs=0.835), while pH,
dissolved organic carbon, and ammonia nitrogen might be the
key driving forces for the AOB/AOA ratio in lake water.
Sediment AOA and AOB diversity was correlated with nitrate
nitrogen (rs = -0.786) and total organic carbon (rs = 0.769),
respectively, while planktonic AOB diversity was correlated
with ammonia nitrogen (rs=0.854). Surface water and sedi-
ment in the same location had a distinctively different micro-
bial community structure. In addition, sediment AOB commu-
nity structure was influenced by total phosphorus, while total
phosphorus might be a key determinant of planktonic AOB
community structure.
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Introduction

Microbial ammonia oxidation plays a crucial role in nitrogen
cycling in aquatic ecosystems. Ammonia conversion can be
achieved by both ammonia-oxidizing archaea (AOA, affiliat-
ed with archaeal phylum Thaumarchaeota) and bacteria
(AOB, within classes Beta- and Gamma-proteobacteria)
(Hayden and Beman 2014) . Both use ammonia
monoxygenase (AMO) to catalyze the oxidation of ammonia
nitrogen. The amoA gene has become a well-established func-
tional biomarker to investigate the distribution of ammonia-
oxidizing archaeal and bacterial populations in marine and
estuarine ecosystems. Salinity has been known as a key factor
shaping the abundance of ammonia-oxidizing microbial com-
munity (Zhang et al. 2015a). AOA are typically more abun-
dant than AOB in marine environment (Bouskill et al. 2012;
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Lipsewers et al. 2014; Nakagawa et al. 2007; Newell et al.
2013), suggesting that AOAmight play a more important role
in ammonia oxidation. However, the numerical advantage of
AOAversus AOB in estuarine ecosystem remains ambiguous
(Magalhaes et al. 2009; Mosier and Francis 2008; Puthiya
Veettil et al. 2015; Santoro et al. 2008; Veettil et al. 2015;
Zhang et al. 2015a,b).

The distribution of sediment ammonia-oxidizing archaeal
and bacterial populations has been investigated in a variety of
freshwater ecosystems, such as river (Reis et al. 2015;
Sonthiphand et al. 2013; Sun et al. 2013; Xie et al. 2014),
reservoir (Wang et al. 2014), lake (Bollmann et al. 2014;
Hou et al. 2013; Liu et al. 2015; Mukherjee et al. 2016;
Zhao et al. 2013, 2014), wetland (Liu et al. 2014a; Wang
et al. 2013; Yang et al. 2014), and pond (Lu et al. 2015), yet
the relative importance of AOA and AOB to nitrification pro-
cess in freshwater sediments remains under debate. Several
previous studies indicated that AOA amoA gene abundance
was usually greater than AOB in lake sediments (Herrmann
et al. 2009; Hou et al. 2013; Zhao et al. 2014), while the
numerical dominance of AOB over AOA amoA gene abun-
dance was observed in sediments of many freshwater lakes on
the Yunnan Plateau (Liu et al. 2015). AOA and AOB can have
comparable contribution to nitrification in lake sediment (Liu
et al. 2014b). So far, the links between lake sediment
ammonia-oxidizing microbial populations and environmental
factors still remain largely unclear. A number of factors (etc.,
pH, nitrogen compounds, phosphorus, and organic matter)
might mutually govern the abundance, diversity and structure
of lake sediment AOA and AOB (Liu et al. 2014b, 2015; Yang
et al. 2016). Moreover, although the spatial variation of lake
sediment AOA and AOB communities has been well-docu-
mented, information on their temporal change is still very
limited. In addition, plateau lakes may harbor ammonia-
oxidizing assemblages of different evolutionary origin from
those in other lakes worldwide (Yang et al. 2013). However,
little is known about the distribution of sediment AOA and
AOB in plateau freshwater lake (Liu et al. 2015; Yang et al.
2016). Several studies have shown that planktonic AOA and
AOB communities in oligotrophic high-altitude lakes can vary
with sampling site and time (Auguet et al. 2011; Auguet and
Casamayor 2013; Hayden and Beman 2014; Hu et al. 2010;
Vissers et al. 2013; Yang et al. 2013). To date, the difference of
the diversity and structure of ammonia-oxidizing microorgan-
isms between in water column and in sediment has not been
addressed, although Auguet et al. (2012) implied that AOA
assemblages in water column were distantly related to their
sediment counterparts.

Dianchi Lake (309 km2), located on the Yunnan Plateau, is
the sixth largest freshwater lake in China, with average water
depth and altitude of 4.4 and 1886 m, respectively (Yang et al.
2016). Dianchi Lake is regarded as one of the three most
eutrophic lakes in China. Because it provides the substrate

for nitrogen removal through denitrification and/or anammox,
ammonia oxidation can be of great importance to diminish the
external nitrogen pollutants (Hou et al. 2013). Therefore, de-
tailed knowledge of AOA and AOB communities in Dianchi
Lake can aid in the possible solutions for its eutrophication.
Therefore, the main objective of the present study was to
investigate the variation of AOA and AOB communities in
both the water columns and sediments of highly eutrophic
Dianchi Lake.

Materials and methods

Study sites and sampling

Four sampling locations were located in the northern part of
Dianchi Lake (Fig. S1). Triplicate water and sediment samples
were collected in July (summer) and October (autumn) in
2014. Water samples (1-m depth below water surface) were
collected using plexiglass water sampler, while sediment sam-
ples (0–5 cm) were collected using core sampler. In this study,
samples SW1, SW2, SW3, and SW4, respectively, represent-
ed the water samples collected from the sampling sites 1–4 in
summer, while samples AW1, AW2, AW3, and AW4 corre-
spondingly represented the water samples from these four
sites in autumn. Moreover, samples SS1, SS2, SS3, and
SS4, respectively, were referred to the sediment samples from
the sampling sites 1–4 in summer, while samples AS1, AS2,
AS3, and AS4 correspondingly were referred to the four sed-
iment samples in autumn. After collection, these water and
sediment samples were immediately transported to the labo-
ratory. For water samples, pH, dissolved oxygen (DO), am-
monium nitrogen (NH4

+-N), nitrate nitrogen (NO3
--N), total

nitrogen (TN), and total phosphorus (TP) were determined
according to the standard protocols (China Environmental
Protection Agency 2002). The level of dissolved organic car-
bon (DOC) in water was measured using a Shimadzu 5000A
TOC analyzer. The levels of sediment total organic carbon
(TOC), NH4

+-N, NO3
--N, TN, and TP were determined ac-

cording to the literatures (Song et al. 2012; Yang et al. 2016).
The properties of water and sediment samples are listed in
Table S1 and Table S2, respectively.

Molecular analyses

Microbial cells in each water sample (300 mL) were retained
using 0.22-μm pore-size membrane (diameter 50 mm;
Millipore), and the total genomic DNAwas extracted indepen-
dently from each replicate using E.Z.N.A. Water DNA kit
(Omega, USA). Sediment DNAwas extracted independently
from each replicate using Powersoil DNA extraction kit
(Mobio Laboratories, USA). DNA quality was checked by
1.0 % agarose gel electrophoresis and DNA concentration
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was quantified using a biophotometer (Eppendorf, Hamburg,
Germany). Each replicate lake water or sediment DNA sample
was individually subjected to real-time quantitative PCR (q-
PCR) assays. The number of archaeal and bacterial amoA
genes were quantified using the primer sets Arch-amoAF
(5′-STAATGGTCTGGCTTAGACG-3′)/Arch-amoAR (5′-
GCGGCCATCCATCTGTATGT-3′), and AmoA-1 F (5′-
GGGGTTTCTACTGGTGGT-3 ′ ) /AmoA-2R (5 ′ -
CCCCTCKGSAAAGCCTTCTTC-3′), respectively, follow-
ing the same PCR reactions as previously described (Francis
et al. 2005; Rotthauwe et al. 1997; Wang et al. 2014). SYBR
Green q-PCR assays was performed using an ABI 7500 FAST
(Applied Biosystems). Standard curves ranging from 103 to
108 gene copies/mL were generated using serial dilutions of
linearized plasmids (pGEM-T, Promega) containing cloned
amoA gene amplified from environmental DNA. The ampli-
fication efficiency and coefficient (r2) for the amplification of
AOA and AOB amoA genes were 93 and 99 %, 0.994 and
0.998, respectively. One-way analysis of variance (ANOVA)
followed by the Student–Newman–Keuls test were applied to
assess the significant differences (P<0.05) in the copy num-
ber of amoA gene among different samples.

The primer sets Arch-amoAF/Arch-amoAR and AmoA-
1 F/AmoA-2R were also adopted for construction of AOA
and AOB clone libraries, following the same conditions as
previously described in the literature (Wang et al. 2014). The
PCR products from triplicate samples were mixed in equal
amounts and cloned into pMD19-T vector (Takara Corp,
Japan). The clones containing correct size were sequenced at
Beijing Genomics Research Center Co., Ltd. The obtained
valid amoA gene sequences were assigned into the same op-
erational taxonomic units (OTUs) with a maximum distance
of 3% using theMOTHUR program (Schloss et al. 2009), and
OTU-based Shannon diversity index was further calculated.
Phylogenetic analysis of the obtained amoA gene sequences
was performed using the MEGA 6.0 software (Tamura et al.
2013). Moreover, the links between ammonia-oxidizing as-
semblages and water or sediment properties were identified
using Pearson’s correlation analysis with the SPSS 20.0 soft-
ware. Redundancy analysis (RDA) using the CANOCO 4.5
software was also applied to discriminate the links between
microbial community composition and environmental factors.
The fraction of amoA gene sequence in each OTU was
assigned as species input and the measured water/sediment
physicochemical properties as input for the environmental
variables. The significance test of Monte Carlo permutations
was performed to choose a suitable model of the
microorganism-environment relationships. The obtained se-
quences in this study were deposited in the GenBank database
under accession number KT317786–KT318082 and
KT274817–KT275131 for AOA and KT323361–
KT323795, KP902850–KP902954, and KP903025–
KP903057 for AOB, respectively.

Results

Abundance of archaeal and bacterial amoA genes
in summer and autumn

In this study, AOB amoA abundance was significantly
greater than AOA in water samples (P < 0.05) except
for sample AW3 (Fig. 1). The number of archaeal
amoA gene ranged from 3.72 to 1.16 × 105 copies per
mL water in the water samples from Dianchi Lake.
Sample AW3 (1.16 × 105 copies per mL water) and sam-
ple AW1 (6.86 × 104 copies per mL water) had much
greater AOA amoA gene abundance than other water
samples (less than 7 × 103 copies per mL water)
(P < 0.05). At each sampling site, the archaeal amoA
gene was more abundant in the water column in autumn
than in summer (P< 0.05). Moreover, the significant dif-
ference of the bacterial amoA gene abundance was ob-
served in the water columns in either summer or autumn
(P< 0.05), ranging from 8.02 × 102 to 1.42 × 105 bacterial
amoA gene copies per mL water. Sample AW1 had the
greatest AOB amoA abundance followed by sample
SW1. These two water samples (more than 6.6 × 104 bac-
terial amoA gene copies per mL water) had significantly
greater AOB amoA abundance than the rest (less than
3.5 × 104 bacterial amoA gene copies per mL water)
(P< 0.05). At both sampling sites 1 and 4, AOB amoA
was more abundant in autumn than summer, but the re-
verse was observed at sites 2 and 3. In addition, the ratio
of AOB to AOA amoA genes ranged between 533 and
905.6 in summer water samples, much greater than that
in autumn water samples (0.04–2.07).

For each sediment sample, AOB showed greater amoA
gene abundance than AOA (P<0.05) (Fig. 2). The number
of archaeal amoA gene varied from 2.54×103 to 3.7 ×104

copies per gram dry sediment in summer and autumn sedi-
ments in Dianchi Lake. Samples AS1, AS3, and AS4 (more
than 1.3×104 gene copies per gram dry sediment) had greater
AOA amoA abundance than other sediment samples (less than
7.3×103 gene copies per gram dry sediment) (P<0.05). At
each sampling site, the archaeal amoA gene in autumn sedi-
ment sample numerically outnumbered the corresponding
summer one (P<0.05). Moreover, sediment samples from
Dianchi Lake showed a significant difference in AOB amoA
gene abundance (P < 0.05), varying from 4.75 × 104 to
3.84×105 bacterial amoA gene copies per gram dry sediment.
Sample AS2 had much lower AOB amoA gene abundance
than other sediment samples (P<0.05). At each sampling site,
the summer sediment sample showed greater AOB amoA
gene abundance than the corresponding autumn one
(P<0.05). In addition, the ratio of AOB to AOA in summer
sediment samples (71.6–151) was much greater than that in
autumn sediment samples (5.7–2.07).

15360 Environ Sci Pollut Res (2016) 23:15358–15369



Diversity of archaeal and bacterial amoA genes in summer
and autumn

In the present study, a total of 612 archaeal and 573 bacterial
amoA gene sequences were retrieved fromwater and sediment
samples from Dianchi Lake. AOA libraries were composed of
5–15 archaeal OTUs (Table 1). A wide range of AOA com-
munity diversity was found in both sediment samples (with
Shannon index of 0.68–2.1) and water samples (with Shannon
index of 1.14–1.96). At sampling sites 1, 2, and 4, summer
water samples had lower AOA community diversity than the
corresponding autumn ones.

AOB libraries consisted of 1–15 bacterial OTUs (Table 2).
A wide range of AOB community diversity also occurred in
either sediment samples (with Shannon index of 0–2.08) or
water samples (with Shannon index of 0.64–2.28). Summer
sediment samples had greater AOB community diversity than
the corresponding autumn ones at three sampling sites (sites 1,
3, and 4). However, at each sampling site, summer water sam-
ples showed greater AOB diversity than the corresponding
autumn ones. Moreover, in both summer and autumn seasons,

sediment samples showed lower AOB diversity than the cor-
responding surface water samples in most of the sampling
sites (3 out of 4). In addition, autumn water and sediment
samples always showed lower AOB diversity than AOA di-
versity. In contrast, summer water and sediment samples usu-
ally had relatively high AOB diversity.

Phylogeny of AOA and AOB communities in summer
and autumn

In the present study, the representative sequences used for
further phylogenetic analysis were selected only from the ma-
jor OTUs (containing at least two amoA gene sequences). The
archaeal amoA gene sequences from the major AOA OTUs
could be assigned into six distinctive AOA groups (clusters
A–F) (Fig. 3). Both sediment samples and water samples from
Dianchi Lake differed greatly in the proportion of each AOA
amoA cluster (Fig. S2a). In the same sampling location, a
distinctive structure difference of AOA communities between
in surface water and in sediment was also observed. Cluster-A
was the second largest AOA group in both waters and
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sediments. The proportion of AOA sequences affiliated with
cluster-A in water samples AW1, SW3, SW4, AW2, AW3,
and AW4 (25–45.5 %) was higher than SW1 (11.4 %) and
SW2 (19.5 %). The AOA sequences affiliated with cluster-A
comprised a greater proportion in sediment samples SS1, SS4,
AS2, and AS3 (30.6–41.9 %) than in other sediment samples
(0–19.4%). The AOA sequences in this cluster were related to
≥97 % similarity to several cultured ones from wastewater
treatment plant, flooding paddy soil, lake sediment.
Moreover, cluster-C was the largest AOA group in both wa-
ters and sediments. They comprised a greater fraction of the

total sequence library in summer water samples (SW1 65.7%,
SW2 65.6 %, SW3 50%, and SW4 64.1 %) than autumn ones
(AW1 36.4%, AW2 30.8%, AW3 42.4 %, and AW4 41.7 %).
In addition, AOA sequences affiliated with cluster-C
consisted of a greater proportion in sediment samples SS2,
SS3, AS1, and AS4 (64.5–87.2 %) than other sediments
(38.7–54.3 %). The sequences in cluster-C were related with
≥95% similarity to several cultured ones from a variety of soil
and sediment ecosystems, including river side, wetland, and
grassland soils, and wetland, river estuary, and lake estuary
sediments. Cluster-F was a minor AOA group. The sequences
in this group could be related to ≥89 % similarity to the AOA
amoA gene from two cultivated AOA strains (Nitrososphaera
JG1 and EN76) (Kim et al. 2012; Tourna et al. 2011). They
were only observed in water samples SW1 (8.6 %), AW1
(6.1 %), and AW4 (11.1 %) and sediment samples SS3
(7.7 %), AS1 (6.5 %), and AS3 (20.6 %).

The sequences from the major AOB amoA OTUs could be
grouped into five distinctive AOB clades (clusters I–VI)
(Fig. 4). Both sediments and waters showed an evident differ-
ence in the proportion of each AOB amoA gene cluster
(Fig. S2b). Surface water and sediment samples from the same
site also showed distinct community structures. AOB se-
quences affiliated with cluster I were mainly observed in sum-
mer waters SW1, SW2 and SW3 (31–67.6 %) and summer
sediments SS1, SS3 and SS4 (55.6–85.7 %). AOB sequences
affiliated with cluster I were not detected in all the autumn
waters and most of the autumn sediments (3 out of 4). These
sequences could be related with ≥90 % similarity to the un-
cultured ones from aquaculture pond sediment, rice soil, pla-
teau soil and riparian sediment. Cluster IV was the second
largest AOB group. AOB sequences affiliated with cluster
IV were mainly found in autumn waters AW1, AW2, AW3
and AW4 (57.6–79.4 %) and autumn sediments AS2 (51.4 %)
and AS3 (80 %). Most of AOB sequences in cluster IV
showed ≥93 % similarity to the uncultured ones from lake
sediment. In addition, cluster V was the largest AOB amoA
group and the members in this group could be distantly related
(less than 82 % similarity) to the amoA gene from one culti-
vated Nitrosomonas strain. AOB sequences affiliated with
cluster V predominated in water sample SW4 (71.4 %) and
sediment samples SS2, AS1 and AS4 (89.3–100 %), and also
comprised a considerable proportion in water samples AW1,
AW2, AW3, AW4 and SW2 (13.8–42.4 %) and sediment
samples AS2 (48.6 %) and AS3 (20 %). However, AOB se-
quences affiliated with cluster V were not detected in other
water or sediment samples.

Influential factors regulating AOA and AOB communities

Pearson’s correlation analysis indicated that the AOB/AOA
ratio in lake water was positively correlated with the levels
of pH, DOC, and NH4

+-N (P<0.05), while no significant

Table 1 Diversity indices of each AOA clone library

Sample Sequence number OTUs Shannon index

SS1 43 15 2.1

SS2 40 5 0.99

SS3 37 5 0.68

SS4 33 8 1.68

AS1 36 9 1.49

AS2 39 7 1.32

AS3 39 7 1.62

AS4 39 6 0.87

SW1 38 8 1.38

SW2 44 7 1.23

SW3 38 9 1.65

SW4 42 6 1.14

AW1 36 9 1.7

AW2 35 8 1.96

AW3 36 6 1.54

AW4 37 6 1.5

Table 2 Diversity indices of each AOB clone library

Sample Sequence number OTUs Shannon index

SS1 37 14 2.08

SS2 34 7 1.02

SS3 33 8 1.29

SS4 34 11 1.76

AS1 38 2 0.28

AS2 36 4 1.14

AS3 37 4 0.79

AS4 36 1 0.00

SW1 37 14 2.28

SW2 35 15 2.45

SW3 41 14 2.05

SW4 36 4 0.90

AW1 36 6 0.98

AW2 33 4 1.20

AW3 35 2 0.64

AW4 35 4 0.74
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links were found between the determined water parameters
and AOA or AOB amoA gene abundance (P > 0.05)
(Table 3). Planktonic AOB diversity was found to show a
positive correlation with NH4

+-N (P<0.05). Moreover, sedi-
ment AOA amoA gene abundance was positively correlated
with sediment NH4

+-N (P<0.05), while the sediment AOB/
AOA ratio showed a positive correlation with TP (P<0.05)
(Table 4). In addition, sediment AOA diversity was negatively
correlated with NO3

--N (P<0.05), while sediment AOB di-
versity showed a positive correlation with TOC (P<0.05).

Water environmental factors accounted for 74.9 % (the first
two RDA axes, respectively, 30.5 % and 21.6 %) of the total
variance for planktonic AOA OTU composition (Fig. 5a). In
this study, no water parameter was found to significantly con-
tribute to the planktonic AOA community–environment rela-
tionship. For planktonic AOB OTU composition, the water
environmental factors accounted for 90.7 % (the first two
RDA axes, respectively, 32 % and 27.7 %) of the total vari-
ance (Fig. 5b). TP (P=0.0340, F=2.821, 999 Monte Carlo
permutations) significantly contributed to the planktonic AOB
assemblage–environment relationship. In addition, sediment
environmental factors explained 88.7 % (the first two RDA
axes, respectively, 35.9% and 25.3%) of the total variance for
sediment AOA OTU composition (Fig. 6a). No sediment pa-
rameter significantly contributed to the sediment AOA–envi-
ronment relationship. The sediment environmental factors
accounted for 88.2 % (the first two RDA axes, respectively,
41.5 % and 20.2 %) of the total variance for lake sediment
AOB OTU composition (Fig. 6b). Only TP (P = 0.012,
F=4.259, 999 Monte Carlo permutations) showed significant
contribution to the sediment AOB–environment relationship.

Discussion

AOA and AOB amoA gene abundance in freshwater lake

It remains unclear whether AOA or AOB amoA gene is dom-
inant in lake sediment ecosystem. Previous studies indicated
that AOA amoA gene outnumbered AOB in the sediments of
freshwater lakes at different trophic states, such as eutrophic
freshwater lakes (Chaohu Lake and Taihu Lake) (Hou et al.
2013; Zhao et al. 2014), mesotrophic Erhai Lake (Yang et al.
2016), and oligotrophic Lake Superior (Bollmann et al. 2014).

AOA amoA gene also showed numerical dominance over
AOB in the sediments of eight freshwater lakes in Jiangsu

�Fig. 3 Phylogenetic tree of representative archaeal amoA sequences and
reference sequences from Genbank. The obtained archaeal sequences
beginning with “SW1”–“SW4,” “AW1”–“AW4,” “SS1”–“SS4,” and
“AS1”–“AS4” were referred to the sequences retrieved from samples
SW1–SW4, AW1–AW4, SS1–SS4, and AS1–AS4, respectively. The
number in parentheses represents the numbers of the sequences in the
same OTU in a given clone library. Numbers at the nodes indicate the
levels of bootstrap support based on neighbor-joining analysis of 1000
resampled datasets. The bar represents 5 % sequence divergence
>
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(China) (Sun et al. 2014). However, bacterial amoA gene was
more abundant than archaeal amoA gene in the sediments of
several small freshwater lakes on the Yunnan Plateau (Liu
et al. 2015) and eutrophic freshwater Lake Erie (Bollmann
et al. 2014). AOA amoA gene was also found to be less abun-
dant than AOB in the sediments of saline Qinghai Lake (Jiang
et al. 2009). In this study, sediment AOB always displayed
greater amoA gene abundance than AOA, suggesting that
AOB might have a greater contribution to nitrification in lake
sediment of eutrophic freshwater Dianchi Lake. This was in
agreement with the result reported in our recent study (Yang
et al. 2016).

So far, although the spatial variation of AOA and AOB
amoA gene abundance in freshwater lake sediment has been
well-documented, there is a paucity of information on the
temporal change. The present study showed the time-related
change of both AOA and AOB amoA gene abundance in lake
sediment. At a given sampling site, sediment AOA abundance
was greater in autumn than summer, while sediment AOB
amoA gene abundance was greater in summer. In addition,
the sediment AOB/AOA ratio was also subject to temporal
change, and it was much greater in summer than in autumn.

It remains in debate whether AOA or AOB amoA gene is
more abundant in lake water column. AOA amoA gene were
more abundant than AOB in the waters of saline Qinghai Lake
(Jiang et al. 2009). Vissers et al. (2013) indicated that AOA
amoA gene generally outnumbered AOB in the water column
of oligotrophic freshwater Lake Lucerne, while Hayden and
Beman (2014) showed that AOB amoA gene was more abun-
dant than AOA in all the water samples from nine oligotrophic
high-altitude freshwater lakes in California. Mukherjee et al.
(2016) revealed that AOA amoA gene dominated compared to
AOB in oligotrophic freshwater Lake Superior, whereas AOB
amoA gene were more abundant than AOA in eutrophic fresh-
water Lake Erie. In the present study, both AOA and AOB
amoA genes in water columns of eutrophic freshwater Dianchi
Lake showed the evident time- and site-related changes. This
was consistent with the results reported in oligotrophic fresh-
water lake (Vissers et al. 2013). In Dianchi Lake, similar to
sediment AOA amoA gene, at a given sampling site, plank-
tonic AOA amoA gene was also found to be more abundant in
autumn than in summer. In addition, AOB amoA gene gener-
ally showed greater abundance than AOA in lake water, sug-
gesting that AOB might play a more important role in

�Fig. 4 Phylogenetic tree of representative bacterial amoA sequences and
reference sequences from Genbank. The obtained bacterial sequences
beginning with “SW1”– “SW4”, “AW1”– “AW4”, “SS1” –“SS4” and
“AS1” –“AS4” were referred to the sequences retrieved from samples
SW1– SW4, AW1– AW4, SS1 –SS4 and AS1 –AS4, respectively. The
number in parentheses represents the numbers of the sequences in the
same OTU in a given clone library. Numbers at the nodes indicate the
levels of bootstrap support based on neighbor-joining analysis of 1000
resampled datasets. The bar represents 5 % sequence divergence
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nitrification in lake water. The temporal shift in the AOB/
AOA ratio in water columns was also observed, and the
AOB/AOA ratio was much greater in summer than in autumn.

AOA and AOB community diversity in freshwater lake

Several previous studies indicated that AOA generally had
higher community diversity than AOB in sediments of Taihu
Lake (Zhao et al. 2014) and small freshwater lakes on the
Yunnan Plateau (Liu et al. 2015), while other studies showed
higher AOB diversity than AOA in sediments of Jinshan Lake
(Liu et al. 2014b) and Dianchi Lake and Erhai Lake (Yang
et al. 2016). In the present study, both AOA and AOB
diversity in sediments of Dianchi Lake illustrated a temporal
shift. In addition, autumn sediment samples always showed
lower AOB diversity than AOA, while summer sediment
samples usually had relatively high AOB diversity. This
suggested that the diversity difference between lake
sediment AOA and AOB could vary with time.

Auguet et al. (2011) reported the seasonal changes of AOA
diversity in waters in oligotrophic alpine lakes. Hu et al.
(2010) revealed higher planktonic AOA diversity than AOB
in two high-altitude oligotrophic freshwater lakes. In this
study, both AOA and AOB diversity in water columns of
eutrophic Dianchi Lake illustrated the evident time- and site-
related changes. At a given sampling site, planktonic AOA
generally had lower diversity in summer than in autumn,
while planktonic AOB tended to have relatively high diversity
in summer. In addition, planktonic AOB diversity was

generally higher than planktonic AOA in summer, but lower
in autumn, which also suggested the temporal change of di-
versity difference between lake planktonic AOA and AOB.
Moreover, at a given sampling site, sediment usually tended to
have lower AOB diversity than surface water.

AOA and AOB community structure in freshwater lake

The spatial heterogeneity of the structure of either sediment
AOA or AOB community has been found in a single fresh-
water lake or across different freshwater lakes (Bollmann et al.
2014; Hou et al. 2013; Liu et al. 2014b; Sun et al. 2014; Yang
et al. 2016). In this study, the results of phylogenetic analysis
indicated the site-related difference in AOA or AOB commu-
nity structure in sediments of Dianchi Lake. Moreover, the
present study also provided the evidence that lake sediment
AOA or AOB community structure could be subject to tem-
poral change. In addition, the waters from eutrophic Dianchi
Lake showed the evident time- and site-related variation in
either AOA orAOB community structure. This was consistent
with the results in other previous studies (Auguet et al. 2011;
Auguet and Casamayor 2013; Hu et al. 2010). So far, to the
authors’ knowledge, there has been no report available on
comparing the structures of lake ammonia-oxidizing microbi-
al populations between in sediment and in water column. In
the current study, surface water and sediment in the same
sampling location showed a difference in both AOA and
AOB community structure.

Table 3 Pearson’s correlation
analysis of water AOA and AOB
communities with environmental
factors

DO pH DOC TN TP NH4
+-N NO3

--N

AOA abundance −0.052 −0.432 −0.531 0.141 −0.142 −0.473 0.404

AOB abundance −0.492 −0.539 −0.68 0.678 0.661 0.095 0.654

AOB/AOA −0.132 0.845a 0.75a 0.336 0.304 0.894a −0.499
AOA OTU number −0.1 −0.175 −0.214 0.329 0.539 0.124 −0.061
AOB OTU number −0.312 0.414 0.428 0.637 0.53 0.849 −0.317
AOA diversity 0.24 −0.522 −0.413 −0.357 −0.18 −0.62 −0.091
AOB diversity −0.336 0.437 0.497 0.599 0.521 0.854a −0.391

a Correlation is significant at the 0.05 level

Table 4 Pearson’s correlation
analysis of sediment AOA and
AOB communities with
environmental factors

TOC TN NO3
--N NH4

+-N TP C/N

AOA abundance −0.564 −0.284 0.194 0.963a −0.687 −0.23
AOB abundance 0.051 0.105 0.082 −0.49 0.687 −0.004
AOB/AOA 0.356 0.032 −0.116 −0.799 0.835a 0.263

AOA OTU number 0.131 −0.632 −0.52 −0.049 0.316 0.703

AOB OTU number 0.620 0.167 0.096 −0.524 0.677 0.425

AOA diversity −0.142 −0.446 −0.786a −0.066 0.237 0.341

AOB diversity 0.769a 0.300 0.110 −0.528 0.579 0.407

a Correlation is significant at the 0.05 level
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In this study, only a small proportion of archaeal amoA
gene sequences from Dianchi Lake could be related (with
≥89% similarity) to the AOA amoA gene from two cultivated
AOA strains (Nitrososphaera JG1 and EN76) (Kim et al.
2012; Tourna et al. 2011). Most of the obtained archaeal
amoA gene sequences from Dianchi Lake were distributed
in AOA cluster C, and they could be grouped together with
the uncultured ones from a variety of soil and sediment eco-
systems. Moreover, only a small proportion of AOB se-
quences from Dianchi Lake could be affiliated with several
cultivated Nitrosospira strains (NIJS18, PJA1, and TCH711).
A majority of the obtained AOB sequences from Dianchi
Lake showed no close relation to those from any known iso-
lated AOB sequences. They were affiliated with the uncul-
tured bacterial sequences from various soil and sediment eco-
systems and wastewater bioreactor.

Environmental factors influencing AOA and AOB
community

A number of environmental factors can regulate AOA and
AOB amoA gene abundance in freshwater lake sediment
(Yang et al. 2016). In this study, sediment AOA amoA gene
abundance in Dianchi Lake was found to be likely shaped by
the level of sediment ammonia nitrogen, which was consistent
with the results reported in other freshwater lakes (Liu et al.
2014b; Zhao et al. 2014). Little is known about the environ-
mental factors governing the AOB/AOA ratio in freshwater
lake sediment. Our previous study indicated that the AOB/
AOA ratio in freshwater lakes could be influenced by sedi-
ment NO3

--N (Yang et al. 2016). In contrast, the current study
revealed that TP might positively influence the AOB/AOA
ratio in lake sediment. TP can be a key determinant of AOA
or AOB amoA gene abundance in freshwater lake sediment
(Liu et al. 2014b; Yang et al. 2016). The present study further
suggested the potential role of TP in determining the AOB/
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AOA ratio in lake sediment. In addition, previous studies in-
dicated that lake sediment AOA diversity was likely influ-
enced by lake trophic status (Bollmann et al. 2014;
Herrmann et al. 2009; Yang et al. 2016), TN and TP (Yang
et al. 2016), and temperature (Zeng et al. 2014), while AOB
diversity by lake trophic status (Hou et al. 2013; Yang et al.
2016), pH (Yang et al. 2016), NO3

--N and TN (Liu et al.
2014b), and temperature (Zeng et al. 2014). However, in this
study, lake sediment AOA and AOB diversity was found to be
likely affected by NO3

--N and TOC, respectively, which was
not in agreement with the results reported in these previous
studies. Moreover, it has been widely accepted that lake tro-
phic status is a key determinant of AOA and AOB community
structure (Bollmann et al. 2014; Herrmann et al. 2009; Yang
et al. 2016). The result of RDA in the current study also
showed that TP might play an important role in shaping sed-
iment AOB community structure in Dianchi Lake, while no
obvious links were found between sediment properties and
AOA community structure.

Previous work has reported that planktonic AOA amoA
gene abundance in freshwater lake could be influenced by
lake elevation (Hayden and Beman 2014), NH4

+-N and nitrite
nitrogen (NO2

--N) (Auguet et al. 2011, 2012), and tempera-
ture and conductivity (Vissers et al. 2013), while planktonic
AOB amoA gene abundance by phosphate (Hayden and
Beman 2014). In this study, the links between environmental
factors and planktonic AOA or AOB amoA gene abundance
was not clear. However, the AOB/AOA ratio in waters of
Dianchi Lake was found to be likely influenced by pH,
DOC, and NH4

+-N. Moreover, the present study showed that
AOB diversity in waters of Dianchi Lake might be positively
affected by the level of NH4

+-N. In addition, several previous
studies suggested that planktonic AOA community structure
in freshwater lake was shaped by pH (Auguet and Casamayor
2013), temperature (Auguet et al. 2011), and water depth
(Auguet et al. 2012). Hu et al. (2010) revealed the salinity-
related differentiation of AOA community composition in
high-altitude lakes on the Tibetan Plateau. To date, the report
on the driving force for planktonic AOB community structure
has been yet unavailable. In the current study, the result of
RDA suggested that TPwas likely a key determinant of plank-
tonic AOB community structure in Dianchi Lake, while the
driving force for planktonic AOA community structure was
not identified.

Conclusions

The abundance, diversity and structure of planktonic and sed-
iment AOA and AOB communities in eutrophic Dianchi Lake
were subject to the evident time- and site-related changes.
AOB amoA gene was generally more abundant than AOA
in both water columns and sediments. At a giving sampling

location, surface water and sediment showed a difference in
either AOA or AOB community structure. TP might play an
important role in shaping sediment AOB community struc-
ture, while planktonic AOB community structure was likely
determined by TP as well as TN.
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