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A B S T R A C T

Targeting nonpoint source (NPS) pollution hot spots is of vital importance for placement of best management
practices (BMPs). Although physically-based watershed models have been widely used to estimate nutrient
emissions, connections between nutrient abatement and compliance of water quality standards have been rarely
considered in NPS hotspot ranking, which may lead to ineffective decision-making. It’s critical to develop a
strategy to identify priority management areas (PMAs) based on water quality response to nutrient load miti-
gation. A water quality constrained PMA identification framework was thereby proposed in this study, based on
the simulation-optimization approach with ideal load reduction (ILR-SO). It integrates the physically-based Soil
and Water Assessment Tool (SWAT) model and an optimization model under constraints of site-specific water
quality standards. To our knowledge, it was the first effort to identify PMAs with simulation-based optimization.
The SWAT model was established to simulate temporal and spatial nutrient loading and evaluate effectiveness of
pollution mitigation. A metamodel was trained to establish a quantitative relationship between sources and
water quality. Ranking of priority areas is based on required nutrient load reduction in each sub-watershed
targeting to satisfy water quality standards in waterbodies, which was calculated with genetic algorithm (GA).
The proposed approach was used for identification of PMAs on the basis of diffuse total phosphorus (TP) in Lake
Dianchi Watershed, one of the three most eutrophic large lakes in China. The modeling results demonstrated that
85% of diffuse TP came from 30% of the watershed area. Compared with the two conventional targeting stra-
tegies based on overland nutrient loss and instream nutrient loading, the ILR-SO model identified distinct PMAs
and narrowed down the coverage of management areas. This study addressed the urgent need to incorporate
water quality response into PMA identification and showed that the ILR-SO approach is effective to guide wa-
tershed management for aquatic ecosystem restoration.

1. Introduction

Nonpoint Source (NPS) pollution, resulted from agricultural activ-
ities and urban runoff, has caused water quality deterioration and eu-
trophication in waterbodies across the world (Conley et al., 2009).
Since significant achievement has been made to deal with point source
pollution in recent years, excess NPS nutrient loss has increasingly
become a threat for water quality improvement and aquatic ecosystem
restoration (Sharpley and Wang, 2014). The NPS pollution presents
significant spatial heterogeneity due to diverse soil types, topographical
properties, climatic conditions, and human activities, which is difficult
to identify and control (Schoumans et al., 2014; Xu et al., 2016). To

improve water quality affected by excess NPS nutrient loss, best man-
agement practices (BMPs) are effective and widely implemented to
control transport and delivery of nutrients to waterbodies (Chaubey
et al., 2010; Laik et al., 2014).

For large-scale watersheds, it’s costly and technically difficult to
implement BMPs throughout the watersheds. Spatial heterogeneity of
NPS should be recognized as an important consideration for BMP pla-
cement at the watershed scale. It’s reported that some sub-watersheds
contribute significantly more nutrient loads than others (Schilling and
Wolter, 2009; Strauss et al., 2007; White et al., 2009). Confining BMPs
to high polluted areas is usually more cost-effective than implementing
universal controls or random placement (Giri et al., 2012; Strauss et al.,
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2007). Consequently, identification of vulnerable areas that pose
greater risk of NPS pollution is crucial for more practical and efficient
management strategies, taking into account both time and financial
resource constraints. The concept of critical source areas (CSAs) has
thereby been widely adopted for cost-effective watershed management
decision-making, which are defined as relatively small portions of wa-
tersheds contributing a large quantity of pollutant loads to nearby
water bodies (Renkenberger et al., 2016; Wei et al., 2017).

Identification of CSAs can be conducted through field monitoring or
numerical model simulation (Sharpley et al., 2002). Field-specific
measurement of pollutant loads at the watershed scale is time con-
suming and expensive, which can only represent the local character-
istics (Giri et al., 2012). The physically-based watershed models are
effective tools to support CSA identification by tracking the complicated
hydrologic, soil erosion, plant growing and nutrient transport processes
and estimating nutrient spatial distributions based on monitored dis-
charges and nutrient concentrations (Baginska et al., 2003; Niraula
et al., 2013; Yang et al., 2016). Improvement in watershed modelling
and targeting approaches in recent decades has enabled reliable iden-
tifications of CSAs. Niraula et al. (2013) analyzed the effect of model
choice on identification of CSAs. Hughes et al. (2005) used multi-cri-
teria analysis considering factors that influence overall potential for
nutrient loss. Shen et al. (2015) presented a stepwise approach to
identify CSAs based on specific uses of particular water bodies, defined
as water functional zones. Huang et al. (2015) identified CSAs based on
the relationship between precipitation and nutrient yields, which could
provide a better coverage through accommodating spatial precipitation
characteristics.

In previous studies, targeting CSAs with watershed simulation
models is usually based on the total source pollutant loads from land
units (Loads per Unit Area Index, LUAI) (Giri et al., 2012; Levi et al.,
2018). However, LUAI overlooks pollutant transport and transforma-
tion processes in channels, and thus could not represent distinct water
quality responses to spatially diverse nutrient abatement, which is of
vital importance to guide BMP placement. Although the impacts of NPS
pollution on water quality have triggered worldwide attention (Wall
et al., 2011), responses of rivers and lakes to nutrient load abatement
have been rarely incorporated in targeting CSAs. Sharpley et al. (2003)
stated that targeting CSAs should explicitly demonstrate that (a) these
areas are the main sources of pollution; and (b) implementing mitiga-
tion practices at these areas will significantly reduce pollutant con-
centration in receiving waterbodies. Hydrological connectivity between
overland pollution sources and waterbodies has received limited at-
tention (Yu et al., 2015; Thomas et al., 2016). Only some preliminary
attempts have been made to weight land units according to their dis-
tance to the water bodies (Johnes and Heathwaite, 1997; Lane et al.,
2009). Superior to the distance index, physically-based models are able
to serve as more sophisticated and reliable tools by representing com-
plicated channel transport processes. Some studies targeted CSAs based
on total pollutant loads across the river segments (Load Impact Index,
LII) (Tuppad and Srinivasan, 2008; Giri et al., 2014). The LII in-
corporates contributions of the entire upstream areas. It cannot elim-
inate impacts of the pollutant loads from the upstream, and conse-
quently, the downstream areas have a great chance to be identified as
CSAs if the upstream areas are seriously polluted.

The CSAs identified with the LUAI and LII methods focus on ser-
iously polluted overland areas and river segments, respectively.
However, the ultimate management goal is to improve water quality in
receiving waterbodies. In this regard, the CSAs identified based on
current pollutant loading might not provide sufficient support to guide
BMP implementation without connecting nutrient abatement with site-
specific water quality goal compliance. That might result in inefficient
BMP placement or failing to reach the water quality targets. There is a
critical need for providing deep insights into water quality response to
pollution mitigation, which has been rarely considered when targeting
CSAs. To overcome the limitations of the conventional methods for

CSAs identification, we developed a water quality constrained targeting
framework. The concept of priority management areas (PMAs) is
adopted (Chen et al., 2014; Heck et al., 2017). Instead of merely fo-
cusing on pollutant loading, PMAs are defined as the areas where dif-
fuse pollution mitigation can achieve relatively better water quality
improvement in the present study. PMAs represent the areas with a
high priority for BMP implementation. A Simulation-Optimization ap-
proach based on Ideal Load Reduction (ILR-SO) was developed to
identify PMAs, integrating an optimization model with the physically-
based Soil and Water Assessment Tool (SWAT) watershed model. In this
study, ideal load reduction (ILR) was defined as the required nutrient
load abatement in each land unit to meet site-specific water quality
standards in particular waterbodies. The SWAT model was used to si-
mulate nutrient fate and transport at the watershed scale, including
both overland and instream processes. A Levenberge Marquardt back
propagation (LMBP) network was established to quantify water quality
response to nutrient load reduction. The ILR was calculated with an
optimization model incorporating constraints of water quality stan-
dards. The optimization approach has been widely used for optimal
decision making in nutrient load allocation or abatement estimation
(Destouni et al., 2006; Gren and Destouni, 2012; Zhang et al., 2017).
However, simulation-based optimization, to the best of our knowledge,
has not been used for CSA/PMA ranking. The ILR-SO approach has
advantages over the LUAI and LII methods as it integrates NPS pollution
with water quality goal compliance, and in the meanwhile, mitigates
interference of the upstream areas. The main objectives of this study are
to (a) establish the connections between nutrient load abatement and
compliance of site-specific water quality standards; and (b) prioritize
areas to implement BMPs for NPS pollution mitigation with the new ILR
criterion. The ILR-SO was used to identify PMAs in the Lake Dianchi
Watershed, which incorporates multiple tributaries with distinct water
uses and water quality standards. The detailed modelling procedure and
results are presented in the following sections.

2. Material and methodology

2.1. Study area

Lake Dianchi, located in the southwestern China, is the sixth largest
lake in China and the largest one in Yunnan Province, with a capacity of
15.8×108m3 and an average water depth of 5m. It is among the three
most eutrophic shallow large lakes in China. The watershed
(102°29′–103°01′E and 24°29′–25°28′N) covers a drainage area of
2920 km2. The main tributaries (Fig. 1) draining into Lake Dianchi in-
clude the Panlong (PL) River, Baoxiang (BX) River and Luolong (LL)
River, etc. The Panlong River, with a length of 108 km and drainage
area of 847 km2, is the longest river in the study area. The elevation of
the watershed ranges from 1880.6 m to 2837.6m above the mean sea
level. The prevailing climate in the watershed is humid and mild. The
mean annual air temperature and precipitation are about 15 °C and
1075mm, respectively. Land covers of the watershed mainly consist of
forest (about 55% of the watershed area), cropland (20%), urban area
(17%), water (5%), and pasture (3%). Most of the croplands are located
around the Baoxiang River and southwestern Lake Dianchi Watershed.
Slopes of nearly half area of the watershed are larger than 20%. The
main soil type is the red soil, which is easy to weather and hydrolyze.
Since red soil covers more than 60% of the basin area, the region is
vulnerable to suffer from soil erosion. Lake Dianchi is now facing a
serious eutrophication problem, resulting from a mass of nutrient inputs
from fertilizer application, urban storm runoff, and domestic sewage,
etc. Water quality restoration for Lake Dianchi has raised considerable
attention and become a great challenge along with booming population
and urbanization. In this study, PMAs were identified based on diffuse
total phosphorus (TP) loading, which is regarded as the main culprit
that leads to eutrophication of Lake Dianchi (Liu et al., 2006; Wu et al.,
2017).
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2.2. Methodological framework

The proposed modelling framework for targeting PMAs at the wa-
tershed scale integrates watershed simulation and nutrient abatement
optimization (Fig. 2). In this study, SWAT was used for spatial deli-
neation and simulation of terrestrial and instream processes at the
watershed scale. The ideal nutrient load reduction, defined as ILR, was
calculated with an optimization model constrained by water quality
standards. The PMAs for Lake Dianchi Watershed were identified by
ranking sub-watersheds with the ILR criterion. The decision procedure
is elucidated as follows.

2.2.1. Step 1: Watershed delineation and simulation with SWAT
The watershed was delineated into sub-watersheds based on spatial

properties including Digital Elevation Model (DEM) and river networks.
Each sub-watershed was partitioned into smaller hydrologic response
units (HRUs), the basic computational units. A SWAT model was es-
tablished and run to simulate hydrological and nutrient cycles in each
HRU, and subsequently the instream transport processes. To improve
prediction performance, sensitive SWAT parameters were calibrated

based on the observations in the discharge and water quality mon-
itoring stations. Watershed simulation with SWAT provides the esti-
mation of present-day spatial diffuse TP load contributions, which is the
basis of PMA identification.

2.2.2. Step2: ILR-SO model development and solution
The calibrated SWAT model quantifies relationship between over-

land diffuse TP reduction in sub-watersheds and water quality im-
provement in their connected river segments. The ILR-SO model, an
integration of SWAT simulation and optimization algorithm, was de-
veloped to calculate the ILR ratio, which represents the relative TP load
reduction to the present-day total TP loads in each sub-watershed. It
was formulated with the objective to minimize TP reduction amounts in
the entire watershed, which is constrained to satisfy the water quality
standards. The ILR-SO model integrates SWAT, which involves com-
plicated processes and therefore cannot be solved directly with the
conventional gradient-based algorithms (Chaparro et al., 2008). A
metamodeling-based optimization approach, integrating LMBP with
genetic algorithm (GA), was used to solve the ILR-SO model without the
need to access detailed mechanistic equations of SWAT. By solving the

Fig. 1. The location, monitoring stations, rivers, and land use of Lake Dianchi Watershed.
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ILR-SO model, the ILR ratios of sub-watersheds were calculated.

2.2.3. Step 3: Identification of PMAs
Instead of TP loading per unit area or across a river segment, ILR

was used as the criterion to identify PMAs. To eliminate interference of
different sub-watershed sizes on PMA identification, ILR amounts per
unit area were calculated for each sub-watershed, based on the ILR
ratios optimized with the ILR-SO model. For the rivers meeting water
quality standards, their adjacent sub-watersheds were regarded as ‘Very
Low’ level priority areas. The other sub-watersheds were prioritized
based on the unit ILR amounts. The sub-watershed with a higher rank
indicated a greater priority to implement management practices.

2.3. Watershed simulation with SWAT

2.3.1. SWAT model development
SWAT was employed to develop a simulation model for Lake

Dianchi Watershed. Developed by the United States Department of
Agriculture (USDA), SWAT is a semi-distributed and physically-based

watershed modelling tool computing at daily time steps. SWAT consists
of computation modules including hydrology, plant growth, soil ero-
sion, nutrients, pesticides and agricultural management practices, etc.
Watershed simulation with SWAT is divided into overland and chan-
nelized portions (Meaurio et al., 2015). The overland portion calculates
flow, sediment and other constituents (e.g. nutrients and pesticides)
transported into the channel from all HRUs for each sub-watershed. The
channelized portion simulates water movement and nutrient cycling
through the channel network towards the watershed outlet with phy-
sically-based methods. Instream water routing and nutrient transport
are simulated with the modified kinematic wave model and QUAL2E
model, respectively. Surface runoff is predicted with the modified Soil
Conservation Service curve number (SCS-CN) method based on daily
rainfall (US SCS, 1972). Soil erosion is computed with the modified
universal soil loss equation (MUSLE) in each HRU (Williams, 1975).
The simplified version of the erosion productivity impact calculator
(EPIC) model is used to simulate plant growth (Krysanova and Arnold,
2008).

The input data required for SWAT modelling consist of the DEM,
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Fig. 2. PMA identification framework with the ILR-SO method.
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land use types, soil properties, meteorological data, land management
strategies and point pollution sources. In this study, DEM with a re-
solution of 30m from United States Geological Survey (USGS) was used
to identify the boundary of the watershed and delineate sub-water-
sheds. The Lake Dianchi Watershed was delineated into 64 sub-water-
sheds, and further divided into 319 HRUs by overlapping land cover,
soil and slope layers. The buffer areas (Fig. 1) were eliminated for not
contributing TP loading directly to the tributaries. Soils were char-
acterized with the soil datasets with the scale of 1:1,000,000 from the
Yunnan Institute of Environmental Science. Land cover is developed
from Landsat TM data in 2008 with a spatial resolution of 30m. Tillage
and fertilizer application information derives from the farm survey in
2008 across the watershed. Daily precipitation records from 15 weather
stations were used to drive the SWAT model (Fig. 1). The other me-
teorological data, including daily air temperatures, solar radiation, re-
lative humidity, and wind speed, were monitored in the Kunming
weather station. Monitored daily effluent flow and TP concentration of
wastewater treatment plants (WWTPs) were inputted into the SWAT
model as point sources. Outflows of WWTPs directly discharge into the
nearby streams. Daily flow data were monitored at two stations (Gan-
haizi Station in the Baoxiang River and Kunming Station in the Panlong
River). Monthly observed TP concentration data were gathered from
2004 to 2010 at the outlet of the Baoxiang River (Baoxiang Station).

2.3.2. Model calibration and validation
Some parameters have significant influence on the SWAT model

results but cannot be directly determined by field investigation (Lelis
et al., 2012). To identify the sensitive parameters for calibration, a
manual one-at-a-time (OAT) sensitivity analysis was conducted (Giri
et al., 2015). Seventeen sensitive parameters associated with runoff and
TP simulation were detected. Calibration and validation were carried
out to improve predictive performance for the SWAT model. The overall
simulation period is from 2001 to 2010. The first two years
(2001–2002) were taken as warm-up years to minimize the impact of
uncertain initial system conditions. The USGS load estimator
(LOADEST) regression model (Park and Engel, 2016) was used to
convert the observed TP concentration samples into continuous loading
data. The instream flow data from 2003 to 2010 were used to calibrate
and validate the SWAT model. The parameters relevant to flow were
calibrated from 2003 to 2006 and validated from 2007 to 2010 by
comparing simulated discharges with observations. Afterwards, the
other TP-related parameters were calibrated during 2004–2007 and
validated during 2008–2010 based on monthly TP loading data. Model
calibration and validation were conducted with the method of the se-
quential uncertainty fitting algorithm (SUFI-2) at the monthly step.
SUFI-2 is a sequential procedure which samples the parameters with the
Latin hypercube method and determines pentameter uncertain domains
with global search (Abbaspour et al., 1997). In this study, the SWAT
model for Lake Dianchi Watershed was calibrated with two iterations,
and each with 1000 runs. The Nash-Sutcliffe efficiency (NSE) coeffi-
cient was adopted to quantitatively describe predictive accuracy for the
SWAT model (Nash and Sutcliffe, 1970).

2.4. ILR-SO model development for PMA identification

An ILR-SO model integrating SWAT with optimal decision-making
was developed to target PMAs for Lake Dianchi Watershed based on
ILR. HRUs, the basic SWAT computational units, are decentralized
blocks and thus not appropriate to be used for integrated management.
Therefore, PMAs were identified at the sub-watershed scale. The TP
reduction ratios of each sub-watershed were defined as decision vari-
ables for optimization. Our study aims to guide BMP placement for NPS
pollution mitigation, and therefore, abatement of point source pollution
was not taken into account. The optimization model is based on the
hypothesis that BMP cost is positively correlated with TP load abate-
ment. In this regard, minimizing TP load reduction under constraints of

water quality standards indicates achieving the management goal with
minimum conservation efforts. The ILR-SO model is formulated as fol-
lows:

Objective function: minimizing TP load reduction for Lake Dianchi
Watershed.

∑
=

Min λ SL
k

K

k k
1 (1)

Constraints:

(1) water quality standards constraints.

−
⩾ = …

TP TP
TP

STA m M; 1,2, ,m m

m
m

0

0 (2)

(2) watershed simulation equations.

= …TP SIM SL SL SL( , , , )m m k
0

1 2 (3)

= … …TP SIM SL SL SL λ λ λ( , , , , , , , )m m k k1 2 1 2 (4)

(3) technical constraints.

⩽ ⩽ = …λ k K0 1; 1,2, ,k (5)

where k represents the sub-watershed, with = …k K1,2, , ; K is the total
number of sub-watersheds ( =K 64); m represents the river, with
m=1,2,…,M, M is the number of rivers (M=15); λk is the TP re-
duction ratio for the sub-watershed k; SLk is the background overland
TP loading of the sub-watershed k; TPm

0 is the background TP loading at
the outlet of the river m; TPm is the TP loading (ton) inputted into Lake
Dianchi from the river m after reducing overland diffuse TP loss. The
SIMm represents the SWAT simulation model for the river m, with
outputs of TP loading at the river outlet. The STAm is the expected TP
load reduction ratio to reach the water quality standard of the river m,
which is defined as follows:

=
⎧
⎨
⎩

⩽

>−STA
C C

C C

0
m

a m s m
C C

C a m s m

, ,

, ,
a m s m

a m

, ,

, (6)

where Ca m, and Cs m, are the monitored and standard TP concentration
for river m respectively (mg/L). Cs m, is quantified according to water use
of the river m (Table 1) based on Environmental Quality Standards for
Surface Water of China (GB3838-2002), which divides surface water

Table 1
Water quality goals and current conditions of 15 main tributaries in Lake
Dianchi Watershed.

Abbr. River Name Water quality
goal

Monitored TP
(mg/L)

Goal
compliance

DG Daguan River IV 1.19 N
YL Yunliang River IV 2.64 N
PL Panlong River III 1.06 N
HH Haihe River III 3.48 N
BX Baoxiang River III 0.87 N
ML Maliao River III 0.38 N
LL Luolong River III 0.07 Y
LY Laoyu River III 0.07 Y
NC Nanchong River III 0.13 Y
YN Yuni River III 0.47 N
GC Gucheng River III 0.51 N
ZH Zhonghe River III 0.67 N
CH Chai River III 0.42 N
BY Baiyu River III 0.16 Y
DD Dongda River III 0.07 Y

Note: Monitored TP represents the average TP concentration from 2004 to
2010; Y and N represent meeting the water quality target (Y) and not (N), re-
spectively.
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quality conditions into five categories (Classes I-V which limit TP
concentrations to 0.02, 0.1, 0.2, 0.3, and 0.4 mg/L, respectively). The
STAm is set to 0 when Ca m, is less than Cs m, , which indicates the river m
has reached its water quality standard, and thus it’s not necessary to
implement TP mitigation measures in its adjacent sub-watershed.In the
ILR-SO model formulated as Eqs. (1)-(6), SLk were quantified by SWAT
overland simulation. Reduced surface TP loading based on λk was fed
back to SWAT to calculate the instream TP loading. λk is adjusted and
optimized by the optimization algorithm. In this way, ILR-SO coupled
the mechanistic SWAT model with the optimization model. Based on
optimized λk, the ideal TP load reduction per unit area for each sub-
watershed ILRk (kg/ha) was calculated as follows:

=ILR λ SL
AR
·

k
k k

k (7)

where ARk is the area of the sub-watershed k (ha). A larger ILRk value
represents greater TP load reduction requirement, which indicates that
taking TP mitigation measures in the corresponding sub-watershed
could contribute to more significant water quality improvement.
Therefore, ILRk is regarded as the basic criterion for sub-watershed
ranking and targeting. The sub-watersheds with larger ILRk values were
identified as higher level PMAs.

2.5. ILP-SO model solution with metamodeling

The ILR-SO model, an integration of physically-based SWAT simu-
lation and optimal decision-making, is a complicated non-linear simu-
lation-optimization problem. GA is a promising global-search tech-
nology to deal with complicated problems (Holland, 1992). It can be
easily coupled with simulation models without accessing the detailed
mechanistic functions and the computer codes (McKinney and Lin,
1994). As a global random search method, GA represents possible so-
lutions in the feasible region as individuals of the population and en-
codes them as chromosomes with genes. Fitness of each individual is
evaluated based on objective functions of the optimization model. In-
dividuals with greater fitness values are more likely to survive and
generate a new population by crossover and mutation for the next
generation. SWAT should be run numerous times during the iterative
process of GA to calculate the fitness value for each individual, which
results in time-consuming global search. In this study, metamodeling is
used to reduce computation and improve decision making efficiency.
Metamodeling is an approach to approximate the complicated model
with an efficient mathematical surrogate model (Broad et al., 2015). It
has been proven effective to speed up process-based optimization sig-
nificantly (Broad et al., 2015; Heuvelmans, 2010). The LMBP network,
a back propagation artificial neural network (ANN) incorporating the
Levenberge Marquardt algorithm (Hagan and Menhaj, 1994), was used
for metamodeling in the present study. Compared with the conven-
tional back propagation (BP) algorithm, LMBP could improve speed of
convergence significantly (Saini and Soni, 2002). The procedure to
solve the ILR-SO model integrating GA and metamodeling consists of
the following steps:

2.5.1. Step1: Design of experiments
The Monte Carlo method (Binder, 1986) was used to simulate de-

cision variables λk within the range [0,1] repetitively with a simulation
number =N 20000. The simulated values of λk are represented with

= … = …λ i N k K( 1,2, , ; 1,2, , )k
i .

2.5.2. Step 2: Dataset construction
Reduction ratio samples λk

i were converted into TP loading:

= −Load λ SL(1 )k
i

k
i

k (8)

where Loadk
i is the overland TP loading for the kth sub-watershed and

ith sample. Loadk
i was inputted into SWAT and the TP loading at the

outlet of each river TPm
i was thus obtained:

=TP SIM Load Load Load( , ,..., )m
i

m
i i

K
i

1 2 (9)

The reduction ratios and corresponding TP loading outputs are used
as the sample dataset for meta-model training = 〈 … 〉S λ λ λ TP( , , , ),m

i i i
K
i

m
i

1 2 .

2.5.3. Step 3: Metamodeling with LMBP
The samples Sm

i were divided into three datasets randomly for LMBP
training, among which 60% were the training set, 20% were the vali-
dation set and the remaining 20% were the test set. The network
weights were adjusted based on the training set. The validation set was
synchronously monitored, and the training process would be inter-
rupted when the validation error increased during 6 continuous itera-
tions. Network training would also terminate when reaching the error
threshold of 1.0× 10−4 or the maximum iteration number of 100. The
predictive performance was evaluated with the test set. The metamodel
for the mth river trained with LMBP was represented with NETm, which
was used to substitute for SIMm if reaching the precision threshold,
otherwise the simulation number N was required to be increased and
the above steps should be repeated to train new networks. The SWAT
model was replaced with NETm, and thus TPm, the TP loading of the mth
river, was estimated with Eq. (10).

= …TP NET λ λ λ( , , , )m m k1 2 (10)

2.5.4. Step 4: Optimization with GA
The ILR-SO model was solved with GA by adopting Eq. (1) as the

fitness function for individual evaluation and selection. During the
iterative process of GA, the individuals violating the constraints for-
mulated as Eq. (10) were eliminated. After some trial runs, GA with a
population number of 100, crossover probability of 0.8 and mutation
probability of 0.1 was used to explore optimal solutions. The search
process would be terminated when exceeding the maximum generation
number 500 or the average variation of fitness values less than
1.0×10−4. By solving the ILR-SO model with GA, the optimal TP load
reduction ratio λk for each sub-watershed could be obtained. All the
sub-watersheds were subsequently ranked based on ILRk, which was
calculated with Eq. (7).

3. Results and discussions

3.1. SWAT calibration and validation

The parameters were automatically optimized within their pre-
defined allowable value ranges during the calibration period. The ca-
librated values of selected parameters were presented in Table 2. The
values of CN2, SOL_AWC, and SOL_K varied spatially among different
HRUs, and thus they were calibrated relatively to their initial reference
values. USLE_P and USLE_K are two important parameters for sediment
simulation. Although sediment was not calibrated in this study for lack
of observed data, the parameters related to sediment were still taken
into consideration as most P losses moves with sediment (Kronvang
et al., 1997). Performance of the SWAT model with the optimized
parameters was calibrated and validated by comparing simulated flow
and TP loading results with observations (Fig. 3). The model perfor-
mance was evaluated with NSE. The NSE value greater than 0.5 is
commonly considered to be ‘satisfactory’, ‘good’ for the value above
0.65, and ‘very good’ for the value larger than 0.75 (Moriasi et al.,
2007). Model performance for flow simulation at the two stations is
similar. NSE reached to 0.76 and 0.81 during the calibration period in
the Kunming (Fig. 3a) and Ganhaizi (Fig. 3b) stations, respectively. A
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good performance was also achieved during the validation period. The
NSE values for flow validation in at the Kunming and Ganhaizi stations
are 0.86 and 0.78, respectively.

There is no obvious drop in performance from calibration to vali-
dation, which indicates that the SWAT model is reliable for flow pre-
diction in Lake Dianchi Watershed. The model could capture both the
baseflow and peak flow in the two stations. Most areas in the down-
stream Panlong watershed are urbanized, where surface runoff de-
monstrates more significant inter-annual fluctuation caused by an-
thropic activities. By contrast, the Baoxiang watershed is dominated by
cropland, and instream flow shows relatively regular seasonal varia-
tion. Model performance for TP loading predictions is not as good as
flow, but could still be considered ‘satisfactory’ (Fig. 3c). NSE for the
validation period (0.74) is higher than that of the calibration period
(0.64). The reason is that there are more loading peaks during the ca-
libration period (2004–2007), some of which could not be well cap-
tured with the model, whereas TP loading is much lower during the
validation period, which might be a result of implementation of man-
agement practices in the watershed during the last decade (e.g. buffer
strips and wetlands). The peaks of TP loads and stream flow are syn-
chronously, which usually occur in summer (June to August) driven by
rainfall events.

3.2. Identification of PMAs

The calibrated SWAT model for the Lake Dianchi Watershed was
run over the period of 2001–2010, and TP losses in each sub-watershed
were estimated. The results of TP yields were analyzed in a typical wet
year (2007). Spatial distribution of diffuse TP loading demonstrates
significant spatial heterogeneity (Fig. 4). The upstream Baoxiang River
watershed and southeastern Dianchi Watershed are the main source
areas of TP losses, which results from fertilizer application in cropland.
Diffuse TP loads in the upstream watershed of the Panlong River are
less than 0.1 kg/ha, where the dominated landcover is forest. All the 64
sub-watersheds were prioritized according to their diffuse TP con-
tributions, which is quantified with corresponding TP loading per unit
area (Fig. 4c). The sub-watersheds around the outlets of the Chai River
(CH) and the Yuni River (YN) are significantly more seriously polluted
by diffuse P (3.25 kg/ha and 3.20 kg/ha for sub-watershed 48 and 43,
respectively) than other areas. The TP loads and areas of the ranked
sub-watersheds were cumulated, respectively. The TP and area cumu-
lative ratio curves (Fig. 4a–b) demonstrate that 85% of the total diffuse

TP loads derive from a small fraction of the watershed area (30%). The
TP cumulative ratio curve increases sharply with the higher-ranked sub-
watersheds, and then levels up gently. Most sub-watersheds contribute
merely a small percentage of TP losses for the entire watershed. Spatial
distributions of TP loading in Lake Dianchi Watershed indicate that
PMA identification is critical for diffuse TP abatement and BMP pla-
cement.

According to the GB3838-2002 standards, most rivers in the wa-
tershed are far from reaching the water quality standards, except the
Luolong (LL), Laoyu (LY), Nanchong (NC), Baiyu (BY), and Dongda
(DD) rivers. For the Panlong River and Baoxiang River, the two largest
rivers in the watershed, it was estimated that nearly 75% and 77% of
the instream diffuse TP loading should be reduced to meet the water
quality standards, respectively. The ILR of each sub-watershed was
calculated with the ILR-SO model. There are 20 out of 64 sub-water-
sheds not taken into account for TP load reduction since water quality
standards were satisfied in their adjacent rivers (Fig. 5). After being
ranked with the ILR criterion, the sub-watersheds were classified into
four categories: high, medium, low and very low priority levels, based
on cumulative TP reduction relative to the total TP reduction require-
ment (Table 3). Cumulative TP reduction ratios with 60%, 90%, and
100% were used to classify sub-watersheds with TP loading reduction
requirement into high, medium and low level PMAs. The sub-water-
sheds without TP reduction requirement were identified at ‘very low’
levels, including the 20 sub-watersheds connected to the rivers reaching
water quality standards, and 12 sub-watersheds where the ILR was
equal to zero. The ILR varied from 0.87 to 3.25 kg/ha, 0.26 to 0.60 kg/
ha and 0.01 to 0.15 kg/ha for high, medium and low level PMAs, re-
spectively. Six sub-watersheds were regarded as PMAs with a high-level
priority, located in the watersheds of Baoxiang, Chai, and Yuni rivers
where the dominated land use type was cropland (Fig. 5). The down-
stream watershed of the Panlong River was identified as medium-level
PMAs, where NPS pollution derives from urban storm water pre-
dominantly.

With the ILR-SO method, sub-watershed management priority is
determined based on optimized TP load reduction, which is regarded as
“ideal” because load reduction potentials are not taken into account.
However, TP mitigation capacity might vary spatially with applicable
conservation practices and local landscapes. The ILR optimized by the
ILR-SO approach could not be regarded as predicted or expected BMP
efficiency. It is merely used for spatial comparison and ranking in this
study.

Table 2
The SWAT parameters calibrated for Lake Dianchi Watershed.

Model process Parameter Description Range Calibrated value

Surface runoff CN2a Moisture condition II curve number −0.5,0.5 0.02
Groundwater ALPHA_BF Base flow alpha factor (days) 0,1 0.45
Evapotranspiration ESCO Soil evaporation compensation factor 0,1 0.87
Soil water SOL_AWCa Available water capacity of the soil layer −0.5,0.5 0.11
Surface runoff SURLAG Surface runoff lag time (days) 0,24 8.19
Soil water SOL_Ka Saturated hydraulic conductivity −1,1 0.8
Groundwater REVAPMN Threshold depth of water in the shallow aquifer for revap to occur (mm) 0,500 58.7
Groundwater GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur (mm) 0,5000 4556
Channel CH_N2 Manning’s “n” value for the main channel. 0,0.3 0.12
Channel CH_K2 Effective hydraulic conductivity (mm/hr) 0,150 9.5
Sediment USLE_P USLE equation support practice factor 0,0.3 0.09
Sediment USLE_K USLE equation soil erodibility factor 0,0.3 0.03
Phosphorus ERORGP Phosphorus enrichment ratio 0,5 1.53
Phosphorus PSP Phosphorus availability index 0.01,0.7 0.67
Phosphorus PHOSKD Phosphorus soil partitioning coefficient 100,200 189

a The parameter was changed relatively to the initial value.
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3.3. Comparison with other targeting methods

The proposed ILR-SO targeting method was compared with the
conventional LUAI (Fig. 6a) and LII methods (Fig. 6b), which are based
on overland pollutant losses per unit area and pollutant loading for
each reach segment, respectively. Point sources were omitted when
estimating instream loading for the LII method to eliminate interference
of point sources on PMA identification and make the its results

comparable with LUAI and ILR-SO. The thresholds of cumulative TP
ratios 60%, 90%, and 100% were used to divide sub-watersheds into
high, medium and low level PMAs with the LUAI and LII methods,
consistently with PMAs identification with the ILR-SO method. The
‘very low’ level priority areas without TP abatement requirements were
not identified for the LUAI and LII methods, since water quality stan-
dards were not taken into account with these conventional methods.
Despite that the southwestern sub-watersheds suffer from large diffuse

(a) Kunming Station

(b) Ganhaizi Station

(c) Baoxiang Station

Fig. 3. Flow calibration and validation results in the (a) Kunming station, (b) Ganhaizi station, and (c) TP results in the Baoxiang station. The lines represent the
simulation results and the dots for observed values.
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agricultural TP losses, some rivers have reached water quality standards
(e.g. the average TP concentrations are 0.07 and 0.13, respectively, in
contrast with Class III limiting TP concentration to 0.2mg/L). The
reason is that the southwestern sub-watersheds are not interfered by
domestic pollution as much as the other areas (e.g. the northern sub-
watersheds). For instance, 85.0% of the sub-watershed 26, located in
downstream of the Panlong River, is occupied by residential areas,
whereas for the sub-watershed 42 in the Nanchong River, the propor-
tion is only 1.8% (Fig. 1). The LUAI and LII methods identified most
area of the southwestern sub-watersheds as high-level PMAs regardless
of the fact that water quality standards were already satisfied, which
resulted in a waste of time and resources. PMAs identified with the
LUAI method are consistent with diffuse TP spatial distributions
(Fig. 4c). Compared with LUAI, more sub-watersheds adjacent to the
watershed outlets were regarded as higher priority areas with the ILR-
SO method (e.g. sub-watersheds 21 and 26 around the outlets of the
Yunliang River and the Baoxiang River, respectively). It makes sense
because the ILR-SO method incorporated connectivity between pollu-
tion sources and instream loading, and it’s commonly recognized that
nutrient abatement at watershed outlets are more efficient (Arabi et al.,

2006). The LUAI method is more applicable for local concerns at the
sub-watershed or field scale. LII-targeted PMAs are mostly located in
the near-shore areas, reflecting effects of TP accumulation in channels.
For instance, the downstream sub-watersheds of the Baoxiang River
were identified as high-level PMAs (sub-watersheds 22 and 31) with the
LII method (Fig. 5), whereas they were low-level PMAs with the ILR-SO
method. Contrary to LUAI and LII, the ILR-SO method presents modest
PMA identification results by taking both overland nutrient losses and
instream transport processes into consideration.

3.4. Implications of uncertainty

Evaluation of uncertainty associated with watershed management
has triggered worldwide attentions. The designed implementation
strategies of BMPs might not be able to achieve the expected water
quality goals due to uncertainty in watershed simulation. Considerable
uncertainty sources for nutrient estimation at the watershed scale have
been addressed. There is evidence that parameters of watershed models
would affect nutrient fate and transport significantly (Arabi et al.,
2007). Parameter uncertainty could be mitigated by conducting

Fig. 4. Spatial distributions of annual diffuse TP loads simulated with SWAT in Lake Dianchi Watershed.
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calibration based on observed data to some extent, but it still remains
one of the major uncertainty sources (Benaman and Shoemaker, 2004).
Different projections of future climate change and landuse scenarios are
also important factors influencing watershed hydrology and nutrient
loading (Wu et al., 2012). Destouni et al. (2017) concluded that tem-
poral nutrient loads were primarily dominated by hydro-climatically
driven water discharge across Sweden. Spatial resolution of input data
(e.g. DEM, land cover and soil properties) could have significant im-
pacts on watershed model predictions (Zhang et al., 2014). A thorough
uncertainty analysis was not conducted so far in our study because for
hotspot identification with complicated watershed modelling, there is a
tendency to adopt best-fit parameters and overlook randomness of cli-
mate change and hydrologic conditions (Niraula et al., 2013; Winchell
et al., 2015). In addition, uncertainty-based simulation-optimization is
extremely time-consuming. The physically-based model should be run
numerous times during the globally searching process. The times of
simulation run could increase exponentially with the number of un-
certainty factors. Although tremendous progress has been made for
uncertainty-based optimization in recent decades (Lee and Labadie,
2007; Cheng et al., 2017; Huang et al., 2017), complicated simulation-
optimization based on uncertainty analysis is still limited by large
computational demands. Development of advanced and efficient ap-
proaches are thus required for more robust BMP decision-making by
enabling rigorous uncertainty analysis.

4. Conclusion

A simulation-optimization approach with ideal load reduction (ILR-
SO) was proposed to identify the watershed priority management areas
under water quality constraints. It could support decision making in
identification of hot spots and BMP placement at the watershed scale.
The modelling framework was used for PMA identification in Lake
Dianchi Watershed, which is a large watershed with significant spatial
heterogeneity and comprising multiple tributaries:

(1) The watershed simulation results demonstrated that TP spatial
distribution had significant heterogeneity. About 30% of the wa-
tershed area contributed 75% of TP loading; therefore, it’s essential

River
Lake Dianchi
Buffer area
High level
Medium level
Low level 
Very low (no reduction)

Fig. 5. PMA identification with the ILR-SO method.

Table 3
Sub-watershed ranking and classification with the ILR-SO method.

No. ILR (kg/ha) TLR (ton) CRR (%) Rank/Level No. ILR (kg/ha) TLR (ton) CRR (%) Rank/Level

43 3.25 0.51 1 1/high 27 0.15 0.45 91 17/low
48 1.74 1.67 6 2/high 22 0.13 0.05 92 18/low
46 1.70 6.97 27 3/high 31 0.13 0.55 93 19/low
14 1.00 7.33 48 4/high 11 0.13 0.43 94 20/low
29 0.97 0.11 49 5/high 10 0.09 0.54 96 21/low
20 0.87 1.55 53 6/high 9 0.08 0.31 97 22/low
50 0.60 1.93 60 7/medium 28 0.08 0.4 98 23/low
53 0.59 1.18 62 8/medium 16 0.06 0.15 99 24/low
32 0.58 2.41 69 9/medium 30 0.05 0.16 99 25/low
47 0.54 1.37 73 10/medium 12 0.04 0.09 99 26/low
17 0.40 2.05 79 11/medium 7 0.04 0.09 100 27/low
21 0.39 0.21 80 12/medium 45 0.03 0.08 100 28/low
13 0.37 1.14 83 13/medium 49 0.01 0.02 100 29/low
18 0.35 0.45 84 14/medium 23 0.01 0.01 100 30/low
44 0.30 1.42 89 15/medium 19 0.01 0.04 100 31/low
26 0.26 0.53 90 16/medium 15 0.01 0.02 100 32/low

Note: (a) No. represents the sub-watershed number; (b) the sub-watersheds without TP load reduction requirements are not presented; (c) ILR is the ideal TP load
reduction amount per unit area calculated with Eq. (8); TLR is the total TP load reduction for each sub-watershed, = = …TLR λ SL r R, 1,2,r r r , where r represents the
priority rank; CRR is the cumulative reduction ratio by adding up the reduction ratios of all the sub-watersheds with higher priority ranks,

= ∑ ∑= =CRR TLR TLR/r i
r

i i
R

i1 1 ; (d) ILR is used to rank sub-watersheds; CRR is used to determine thresholds of priority levels.
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to identify PMAs at the watershed scale. Seven out of 64 sub-wa-
tersheds, where cropland is the dominated land use type, were
identified as high-level PMAs.

(2) PMAs identification with the proposed ILR-SO method was com-
pared with the overland nutrient loss based LUAI and the instream
nutrient loading based LII methods. The results indicate ILR-SO is a
rational method by taking into account both pollution sources and
instream processes. By incorporating water quality standards of
multiple rivers draining into Lake Dianchi, ILR-SO identified less
PMA areas than the conventional strategies for excluding areas
without nutrient reduction requirement, which could contribute to
more efficient watershed management.

(3) The 15 major rivers draining into Lake Dianchi are distinct in lo-
cation, length, pathway, and water use. That shows the ILR-SO
approach’s advantages in supporting decision-making in the com-
plex watershed system and serving various conservation objectives.
The approach is especially appropriate for, but not limited to, the
watersheds with long hydrologic residence time in channel net-
works. The ILR-SO approach could also be extended to cases where

a river has hierarchical water quality standards from headwater to
downstream.
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